

Fig. 4. The hydrogen bonding of the barbital anion [see also Table 2(b)].
Berthou, J., Rérat, B. \& Rérat, C. (1965). Acta Cryst. 18, Haas, D. J., Harris, D. R. \& Mills, H. H. (1965). Acta 768-777.

Cryst. 19, 676-679.

Acta Cryst. (1973). B29, 1864

The Crystal Structure of Gallium Thiophosphate, GaPS 4

By Peter Buck and Claus Dieter Carpentier
Kristallographisches Institut der Universität Freiburg i. Br., D-78 Freiburg im Breisgau, Hebelstrasse 25, Germany (BRD)

(Received 26 June 1972; accepted 19 April 1973)
GaPS_{4} is monoclinic with $a=8.603$ (4), $b=7.778$ (3), $c=11 \cdot 858$ (5) $\AA, \beta=135 \cdot 46^{\circ}$, space group $P 2_{1} / c$ and $Z=4$. The structure has been determined from 706 reflexions and refined to $R=0 \cdot 066$. It consists of puckered hexagonally close-packed sulphur layers. Of the interlayers only every other one is occupied by Ga and P cations. Filled and empty interlayers thus alternate, causing perfect cleavability parallel to (100). Ga and P are each surrounded by four sulphur atoms at the corners of distorted tetrahedra.

Introduction

Gallium thiophosphate belongs to a group of ternary metal-phosphorus-sulphur-compounds of the type $\mathrm{MPS}_{4}(\mathrm{M}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In}, \mathrm{Sb}, \mathrm{Bi})$. The crystal structures of AlPS_{4} and BPS_{4} have been solved by Weiss \& Schaefer (1960, 1963). The structure of InPS_{4} has been determined by Carpentier, Diehl \& Nitsche (1970).
Studying the crystal growth of metal-phosphorussulphur compounds by vapour transport, Nitsche \&

Wild (1970) obtained single crystals of GaPS_{4}. The crystals were grown by chemical transport with iodine in a temperature gradient from 650 to $600^{\circ} \mathrm{C}$. Cell constants and space group have been determined by Buck \& Nitsche (1971). The platelike morphology of the crystals differs significantly from that of the other compounds mentioned above. It therefore seemed reasonable for a better understanding of the crystal chemistry of ternary phosphorus chalcogenides to determine also the crystal structure of GaPS_{4}.

Crystal data

Least-squares refinement of powder data using the X-RAY 70 system (PARAM, Stewart, Kundell \& Baldwin, 1970) gave the lattice constants listed in Table 1.

Table 1. Crystal data for gallium thiophosphate GaPS_{4}

Intensity data

Integrated b-axis equi-inclination Weissenberg photographs ($k=0,1,2,3,4$) were collected by the threefilm technique with $\mathrm{Cu} K \alpha$ radiation. The intensities were measured with a Jenoptik photometer (estimated average accuracy $7-8 \%$). Low intensities were estimated visually by means of a calibrated scale. 631 independent reflexions were recorded. Additionally, 75 reflexions with intensities not differing significantly from the background were set to zero and were included as
'less-than's' in the calculations. Intensity data were corrected for Lorentz and polarization factors. The crystal specimen used was of a polyhedral shape that could be approximated by a sphere with a diameter of 0.23 mm . Therefore an absorption correction for that sphere ($\mu R=2 \cdot 4$) was applied to the intensity data.

Structure determination and refinement

The volume of the unit cell corresponds fairly well to the volume corresponding to a hexagonal close packing of 16 sulphur ions. The $d_{(100)}$ value of $6.05 \AA$ is twice the distance of two sulphur layers. Therefore it was assumed that the structure contains close-packed sulphur layers. The perfect cleavability parallel to (100) suggested that the cations Ga and P were not distribbuted evenly among the interstices between all sulphur layers. It seemed likely, rather, that empty and filled interlayers were alternating in the structure.

Patterson projections were computed with $0 k l$ (42 reflexions) and $h 0 l$ (82) intensities. The resolution of these Patterson maps was not very high but they confirmed the above model. The low resolution was not only due to the small number of reflexions used but also - as was seen later - to the fact that many Patterson vectors differed only slightly in direction and length.

With the atomic parameters derived from the Patter-

Table 2. Observed and calculated structure factors

son syntheses a structure factor calculation was performed using the atomic scattering factors for Ga, P and S (neutral atoms) given in International Tables for X-ray Crystallography (1968). No dispersion correction was applied. The isotropic temperature factor was kept at $B=0$. The resultant reliability index was $R=0.27$.

A full-matrix refinement of atomic coordinates and isotropic temperature factors was performed using pro-
gram CRYLSQ (X-RAY 70). No weighting scheme was applied to the observed reflexions. The reliability index converged to $R=0.069$ with zeros included and $R=$ 0.066 with them omitted. Observed and calculated structure factors are listed in Table 2. Final atomic coordinates and U values are given in Table 3.
A difference Fourier-map was featureless with the highest positive values smaller than $\frac{1}{40}$ of the peaks in the Fourier-map.

Results and discussion

Fig. 1 shows the crystal structure of GaPS_{4}. All atoms occupy position $4(e)$ at ($x, y, z ; \bar{x}, \bar{y}, \bar{z} ; x, \frac{1}{2}+y, \frac{1}{2}-z$; $x, \frac{1}{2}-y, \frac{1}{2}+z$) with x, y, z given in Table 3. The structure can be derived from a hexagonal close-packed arrangement of sulphur atoms. The sulphur layers are stacked normally to (100). Of the interlayers only every other

Fig. 1. The crystal structure of GaPS_{4}. (a) View normal to [100]; (b) view along the b axis.
one is occupied by cations [Fig. 1(b)]. Filled and empty interlayers thus alternate, causing the perfect cleavability. Ga and P are surrounded each by four sulphur atoms at the corners of distorted tetrahedra. The coordination tetrahedra of Ga and P are neighbouring and are linked together by edge-sharing. Because of this cation distribution the sulphur layers are slightly puckered and not planar as in ideal hexagonal close packing. The x coordinates of the sulphur atoms vary from 0.22 to 0.30 (0.25 in ideal case.)

In Fig. 1(a) (lower left) a gallium-sulphur and a phosphorus-sulphur tetrahedron are drawn. Table 4 gives the related interatomic distances and angles.

Table 4. Interatomic distances and angles in distorted gallium-sulphur and phosphorus-sulphur tetrahedra

$\mathrm{Ga}-\mathrm{S}\left(1^{\prime \prime}\right)$	2.275 (7) \AA	$\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{Ga}-\mathrm{S}(2)$	$117 \cdot 1$ (3) ${ }^{\circ}$
$\mathrm{Ga}-\mathrm{S}(2)$	2.297 (5)	$\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{Ga}-\mathrm{S}(3)$	$105 \cdot 0$ (2)
Ga--S(3)	$2 \cdot 282$ (7)	$\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{Ga}-\mathrm{S}(4)$	$107 \cdot 4$ (2)
Ga-S(4)	$2 \cdot 266$ (7)	$\mathrm{S}(2)-\mathrm{Ga}-\mathrm{S}(3)$	89.3 (2)
$\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{S}(2)$	3.901 (8)	$\mathrm{S}(2)-\mathrm{Ga}-\mathrm{S}(4)$	116.7 (2)
$\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{S}(3)$	$3 \cdot 615$ (10)	S(3)-Ga--S(4)	$120 \cdot 5$ (3)
S(1")-S(4)	$3 \cdot 661$ (10)	S(1) ${ }^{\prime \prime}$-S(4)-S(3)	56.6 (2)
S(2)-S(3)	$3 \cdot 218$ (8)	S(3)-S(1) ${ }^{\prime \prime}$-S(4)	65.7 (2)
S(2)-S(4)	$3 \cdot 884$ (8)	S(4)-S(3)-S(1")	57.7 (2)
S(3)--S(4)	3.948 (9)	$\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{S}(4)-\mathrm{S}(2)$	62.2 (2)
		$\mathrm{S}(2)-\mathrm{S}\left(1^{\prime \prime}\right)-\mathrm{S}(4)$	$65 \cdot 7$ (2)
		S(4)-S(2)-S(1")	$56 \cdot 1$ (2)
		$\mathbf{S}\left(1^{\prime \prime}\right)-S(2)-S(3)$	$60 \cdot 1$ (2)
		S(3)-S(1) $\mathbf{S}^{\prime \prime}$ S(2)	$50 \cdot 5$ (2)
		$\mathrm{S}(2)-\mathrm{S}(3)-\mathrm{S}\left(1^{\prime \prime}\right)$	$69 \cdot 4$ (2)
		S(2)-S(4)-S(3)	$48 \cdot 5$ (2)
		$\mathrm{S}(3)-\mathrm{S}(2)-\mathrm{S}(4)$	$66 \cdot 8$ (2)
		S(4)-S(3)-S(2)	$64 \cdot 7$ (2)
$\mathrm{P}-\mathrm{S}(1)$	2.048 (10)	$\mathrm{S}(1)-\mathrm{P}-\mathrm{S}(2)$	113.4 (4)
$\mathrm{P}-\mathrm{S}(2)$	2.044 (10)	$\mathrm{S}(1)-\mathrm{P}-\mathrm{S}(3)$	112.3 (4)
$\mathrm{P}-\mathrm{S}(3)$	2.059 (6)	$\mathbf{S}(1)-\mathrm{P}-\mathrm{S}\left(4^{\prime}\right)$	$99 \cdot 1$ (4)
P -	2.047 (8)	$\mathrm{S}(2)-\mathrm{P}-\mathrm{S}(3)$	$103 \cdot 4$ (3)
S(1)-S(2)	$3 \cdot 420$ (9)	$\mathrm{S}(2)-\mathrm{P}-\mathrm{S}\left(4^{\prime}\right)$	$114 \cdot 1$ (3)
S(1)-S(3)	$3 \cdot 411$ (8)	$\mathrm{S}(3)-\mathrm{P}-\mathrm{S}\left(4^{\prime}\right)$	115•1 (4)
$\mathbf{S}(1)-\mathbf{S}\left(4^{\prime}\right)$	$3 \cdot 117$ (10)	$\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{S}\left(4^{\prime}\right)$	54.1 (2)
S(2)-S(3)	$3 \cdot 218$ (8)	$\mathrm{S}\left(4^{\prime}\right)-\mathrm{S}(1)-\mathrm{S}(2)$	$63 \cdot 1$ (2)
S(2)--S(4')	$3 \cdot 433$ (9)	$\mathrm{S}(2)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{S}(1)$	$62 \cdot 8$ (2)
S(3)-S(4')	$3 \cdot 464$ (8)	$\mathrm{S}(1)-\mathrm{S}(3)-\mathrm{S}\left(4^{\prime}\right)$	53.9 (2)
		S(4')-S(1)-S(3)	$63 \cdot 9$ (2)
		$\mathbf{S}(3)-\mathrm{S}\left(4^{\prime}\right)-\mathrm{S}(1)$	62.2 (2)
		S(1)-S(2)-S(3)	61.7 (2)
		$\mathbf{S}(3)-\mathrm{S}(1)-\mathrm{S}(2)$	$62 \cdot 1$ (2)
		$\mathbf{S}(2)-\mathrm{S}(3)-\mathrm{S}(1)$	$62 \cdot 1$ (2)
		$\mathbf{S}(2)-\mathbf{S}\left(4^{\prime}\right)-\mathbf{S}(3)$	55.6 (2)
		$\mathrm{S}(3)-\mathrm{S}(2)-\mathrm{S}\left(4^{\prime}\right)$	62.7 (2)
$\mathrm{Ga}-\mathrm{P}$	2.892 (7)	$\mathrm{S}\left(4^{\prime}\right)-\mathrm{S}(3)-\mathrm{S}(2)$	61.7 (2)

Assuming pure ionic bonding (with ionic radii for $\mathrm{S}^{2-}, \mathrm{Ga}^{3+}, \mathrm{P}^{\mathrm{s}+}: 1 \cdot 85,0 \cdot 62,0 \cdot 35 \AA$, respectively) the following interatomic distances would result: Ga-S $2 \cdot 47$, P-S $2 \cdot 20$ and S-S $3.70 \AA$. The observed Ga-S and P-S distances however are both considerably shorter than these (Table 4). The sulphur ions thus seem to be strongly polarized by Ga and especially by P. All P-S distances in the P-tetrahedra are equal within the limits of the standard deviations. In the Ga-tetrahedra differences exist between the $\mathrm{Ga}-\mathrm{S}$ distances, those pointing to the atoms shared with the P-tetrahedron being somewhat larger than those pointing to the remaining ones. The S-S distances on the other hand are considerably shortened in the P-tetrahedra. In the Ga-tetrahedra two S-S distances are about $3 \cdot 70 \AA$ (sum of ionic radii), three are remarkably longer, and only the S-S distance corresponding to the common edge with P-tetrahedra is significantly shorter. This distortion of the coordination tetrahedra can also be seen from the bond angles which vary from 48.5 to $69 \cdot 4^{\circ}$ for S-S-S angles (ideal 60°) and from $89 \cdot 3$ to $120 \cdot 5^{\circ}$ for S-cation-S angles (ideal $109 \cdot 5^{\circ}$). Generally, the Ga-tetrahedra are more distorted than the P-tetrahedra.

The most densely occupied directions are [011], [010] and their symmetry equivalents (see Fig. 1). The most densely occupied planes containing these directions are the tetrahedral faces which lie approximately parallel to $\{100\},\{011\},\{11 \bar{T}\}$, and $\{10 \overline{2}\}$. This is reflected by the morphology: small polyhedral crystals show the aboved mentioned planes.

Comparison with other $\mathbf{M ~}^{\text {III }}$ thiophosphates

In Table 5 the crystal data of all known $\mathrm{M}^{\mathrm{III}} \mathrm{PS}_{4}$ compounds are listed for comparison.
$\mathrm{BPS}_{4}, \mathrm{AlPS}_{4}$ and InPS_{4} crystallize in acentric space groups with similar cell dimensions whereas GaPS_{4} belongs to a centric space group. By transforming the monoclinic GaPS_{4} cell by

$$
\mathbf{a}^{\prime}=\frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c}), \quad \mathbf{b}^{\prime}=\frac{1}{2}(\mathbf{a}-\mathbf{b}-\mathbf{c}), \quad \mathbf{c}^{\prime}=\mathbf{a}
$$

a triclinic cell commensurate with the other thiophosphates results (Table 5). In this setting the sulphur layers in all the compounds are parallel to (112). Their structures differ only in the cation distributions among the tetrahedral interstices between the sulphur layers. In GaPS_{4} only alternating interlayers are occupied by

Table 5. Crystal data of $\mathrm{M}^{\mathrm{II}} \mathrm{PS}_{4}$ compounds

Compound	BPS_{4}	AlPS_{4}	GaPS_{4}	GaPS_{4} transformed	InPS_{4}
Unit cell	$a=5.60 \AA$	$a=5.61 \AA$	$a=8.603 \AA$	$a^{\prime}=5.694 \AA$	$a=5.60$ £
	$b=5.25$	$b=5.67$	$b=7.778$	$b^{\prime}=a^{\prime}$	$c=9.02$
	$c=9.04$	$c=9.05$	$c=11.858$	$c^{\prime}=8.603$	
			$\beta=135.46^{\circ}$	$\alpha^{\prime}=86 \cdot 15^{\circ}$	
				$\beta^{\prime}=89 \cdot 24$	
				$\gamma^{\prime}=\beta^{\prime}$	
	$Z=2$	$Z=2$	$Z=4$	$Z=2$	$Z=2$
Space group	I 222	P 222	$P 2{ }_{1} / \mathrm{c}$		$I 4$

cations. In the other compounds all the interlayers are occupied by cations but individual differences in their distributions lead to various symmetries.

We are indebted to Professor R. Nitsche for supplying the crystals and for helpful discussions. All numerical calculations were performed on the Univac1106 of Rechenzentrum der Universität Freiburg.

References
Buck, P. \& Nitsche, R. (1971). Z. Naturforsch. 265, 731.

Carpentier, C. D., Diehl, R. \& Nitsche, R. (1970). Naturwissenschaften, 57, 393.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: The Kynoch Press.

Nitsche, R. \& Wild, P. (1970). Mater. Res. Bull. 5, 419423.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). X-RAY 70 System of Crystallographic Programs, Version July 1970. Univ. of Maryland.
Weiss, A. \& Schaffer, H. (1960). Naturwissenschaften, 47, 495.

Weiss, A. \& Schaefer, H. (1963). Z. Naturforsch. 18, 81-82.

Stereochemistry of an Unusual Trialkyl Sulfonium Ion. The Crystal Structure of 2,3-Dimethyl-2-butenyl-1,1,2-trimethylpropyl-methylsulfonium 2,4,6-Trinitrobenzenesulfonate

By W. Barnes and M.Sundaralingam*
Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.

(Received 19 January 1973; accepted 17 April 1973)

Abstract

The nature and crystal structure of the product obtained from the reaction of methylsulfonium 2,4,6trinitrobenzenesulfonate with two molecules of 2,3-dimethyl-2-butene has been determined by X-ray methods and the product was found to be the title trialkyl sulfonium salt. The triclinic $(P \overline{1})$ lattice parameters are $a=13 \cdot 128 \pm 0.009, b=12 \cdot 100 \pm 0.006, c=7.992 \pm 0.003 \AA, \alpha=93.94 \pm 0.04^{\circ}, \beta=102.00 \pm$ 0.04°, and $\gamma=74.95 \pm 0.04^{\circ}$. The structure was solved by the heavy-atom technique and refined by full-matrix least-squares calculations to an R value of 0.057 using 3504 observed reflections measured on a diffractometer. Knowledge of the structure of the trialkyl sulfonium ion has led to a suggested mechanism for its formation. The sulfonium ion is pyramidal and it is distorted from 3 m symmetry. The $\mathrm{C}-\mathrm{S}^{+}$bond distances are $1.799,1.830$ and $1.882 \AA$ and increase with increasing bulkiness of the alkyl group on S^{+}. The ortho nitro groups of the trinitrobenzenesulfonate anion are twisted by 54 and 61° to the benzene plane while the para nitro group is twisted by only $2 \cdot 5^{\circ}$. There are a number of intermolecular contacts shorter than $3 \cdot 4 \AA$. The shortest contacts are between the trinitrobenzenesulfonate anions.

Introduction

In an attempt to synthesize another example of a stable episulfonium salt such as that obtained from the reaction of the olefin cyclooctene with methyl sulfenium trinitrobenzene sulfonate (Pettit \& Helmkamp, 1963), the latter was reacted with excess 2,3-dimethyl-2-butene (Carbin \& Helmkamp, 1970). Two molecules of 2,3-dimethyl-2-butene reacted to give a crystalline product whose structure resisted spectroscopic analysis (Carbin \& Helmkamp, 1970). The present X-ray study has unequivocally established the structure of the product (I) and has also led to the proposal of a probable reaction mechanism for its formation. A paper on the details of the chemical work and a brief report on the X-ray structure have been published elsewhere (Carbin, Helmkamp, Barnes \& Sundaralingam, 1972).

[^0]
Experimental

Colorless crystals of (I) grown in nitromethane and ether were supplied by Carbin \& Helmkamp. The crystal data are as follows: $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}_{2}$, triclinic, $P \overline{1}$, $Z=2 ; a=13 \cdot 128 \pm 0 \cdot 009, b=12 \cdot 100 \pm 0 \cdot 006, c=7 \cdot 992$ $\pm 0.003 \AA, \alpha=93.94 \pm 0.04^{\circ}, \quad \beta=102.00 \pm 0.04^{\circ}, \quad \gamma=$ $74.95 \pm 0.04^{\circ}$ (obtained by least-squares fit of eleven reflections measured on a diffractometer), $D_{\text {obs }}=1.412$ $\mathrm{g} \mathrm{cm}^{-3}$ (by flotation in CCl_{4} and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{P}_{2} \mathrm{O}$), $D_{\text {calc }}=$ $1.406 \mathrm{~g} \mathrm{~cm}^{-3}$. The crystal data are consistent with the presence of one formula unit of the complex, $\left(\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~S}\right)^{+}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O} 9 \mathrm{~S}\right)^{-}$in the asymmetric unit of the structure. The calculated linear absorption coefficient for $\mathrm{Cu} K \alpha$ radiation is $24.2 \mathrm{~cm}^{-1}$.

The crystal used for the data collection was a plate of approximate dimensions $0.25 \times 0.05 \times 0.7 \mathrm{~mm}$. The intensities of 3990 independent reflections were measured on a Picker four-circle diffractometer using nickel-

[^0]: * To whom correspondence should be addressed.

